Insulin glargine and malignancy: an unwarranted alarm

Insulin glargine is a recombinant insulin analogue that has become widely used, largely because of a lower risk of hypoglycaemia and prolonged stable action. Synthetic insulins differ from human insulins in both metabolic and cell-growth activities, which raises legitimate concerns about risk of malignancy.1 A recent observational study claimed an increased cancer incidence in people using glargine insulin compared with other human insulins, but this effect was only apparent after adjusting for dose.2 Subsequently, three further observational studies3–5 and one randomised trial6 have investigated whether insulin glargine is associated with cancer incidence.

Although observational studies from health databases can usefully detect unexpected drug effects in everyday practice, there is potential for biased conclusions.7 The problem is that clinical decisions determining each patient’s treatment are not random: people are prescribed different therapies for health-related reasons. Thus health outcomes might differ between people taking different therapies even if the therapies themselves have no such effect. Despite adjustment for confounders, residual selection bias might distort any true (lack of) differences between treatments.8

Freek W A Verheugt
Department of Cardiology, Onze Lieve Vrouwe Gasthuis, 1091 AC Amsterdam, Netherlands
f.w.a.verheugt@olvg.nl

I have received departmental research funding and consultancy fees from Sanofi-Aventis and speakers’ honoraria from AstraZeneca.

Comment

and for the rest by perceived increased bleeding risk. The last was based on inability to comply with monitoring by international normalised ratio, predisposition to falling or head trauma, persistent blood pressure above 160/100 mm Hg, previous serious bleeding on warfarin, severe alcohol misuse for more than 2 years, peptic ulcer disease, thromboctopenia, or the need for chronic use of a non-steroidal anti-inflammatory drug. Clearly, these criteria were rather loose, being put forward by either the physician or the patient. Therefore double antiplatelet therapy cannot been seen as an alternative to warfarin for patients with atrial fibrillation in general. Are the patients in ACTIVE-A very different from the patients in ACTIVE-W? The strong risk factors for stroke, such as age and CHADS2 score, a clinical predictor for stroke in atrial fibrillation,9 were almost identical (table). As expected, the stroke rate in patients on double antiplatelet therapy was also similar in the double antiplatelet therapy groups in both ACTIVE-A and ACTIVE-W, which strongly suggests that the patients also had the same baseline bleeding risk. So it seems that the populations of patients in both trials were similar. The lowest stroke rate per year was seen in the warfarin group in ACTIVE-W, with a similar major bleeding rate as double antiplatelet therapy in both ACTIVE-A and ACTIVE-W.

Although ACTIVE-A underscores the role of platelets in stroke in patients with atrial fibrillation, double antiplatelet therapy for stroke prevention should be given only to patients who are definitely ineligible for warfarin. This group could include patients who refuse to undergo monitoring or those mentally not able to take the various doses of warfarin mandated by the monitoring. Perceived unacceptably high risk of bleeding itself cannot make patients ineligible for warfarin, as clearly shown in the published ACTIVE trials, because the bleeding rate with double antiplatelet therapy in both studies were very similar to the bleeding rate with warfarin. Therefore warfarin should remain the cornerstone of stroke prevention in atrial fibrillation.

Freek W A Verheugt
Department of Cardiology, Onze Lieve Vrouwe Gasthuis, 1091 AC Amsterdam, Netherlands
f.w.a.verheugt@olvg.nl

I have received departmental research funding and consultancy fees from Sanofi-Aventis and speakers’ honoraria from AstraZeneca.

So what to make of these studies of insulin glargine and malignancy? First, the main hypothesis: does insulin glargine lead to an increased overall incidence of malignancy compared with other insulins? Looking at all five studies, there is no evidence of an excess risk (table). The randomised trial of insulin glargine versus human insulin (free of such confounding problems) included 1017 patients.6 During 4·2 years’ follow-up, there were 20 and 31 patients with incident cancer in the insulin glargine and human insulin groups, respectively— reassuring but too small to provide conclusive evidence. We agree with the statement in the Diabetologia editorial that “There is no evidence of an overall increase in the rate of cancer development in patients on insulin glargine”.1

The cohort study set in Germany by Hemkens and colleagues2 showed a significantly lower incidence of malignancy for those on insulin glargine—perhaps attributable to selection bias and other statistical deficiencies. Their claim of an increased cancer risk with insulin glargine arises from an unconventional analysis that adjusted for insulin dosage. However, the methods used are fundamentally flawed, making the conclusions unsupportable. An essential requirement of any time-to-event (survival) analysis is that allocation to treatment groups and other covariates (such as drug dose) must be determined before follow-up starts. Unfortunately, their classification of patients into treatment groups was based on follow-up information: if a patient changed treatment, or was ever on combined treatment, they were removed from analysis. Any malignancy-free follow-up time before the change is not included. Also, insulin dose was calculated as the mean during follow-up, then included in survival analysis as if it was a baseline covariate. These two serious errors make the article’s findings uninterpretable.

There are methods for incorporating changes in treatment and dosage over time, with use of time-update covariates in Cox’s proportional hazard models.9 However, selection bias could readily generate artificial associations between treatment and/or dosage and outcomes. For example, as patients’ diabetes progresses, their mortality risk increases. But poor glycaemic control might prompt the introduction of insulin, which would create systematic differences between patients receiving oral antidiabetic drugs or insulin and great scope for confounding. Insulin treatment will seem linked to higher mortality compared with oral agents. In turn, higher doses of insulin (whether glargine or other) will be linked to higher mortality. Such findings are an artifact of treatment changes as disease advances, not actual treatment effects. Another issue is reverse causality: cancer often has a long period between biological onset and clinical diagnosis. During the subclinical phase, insulin requirements might be affected by the undetected cancer, and lead to treatment changes. To the unwary observer, it can appear that treatment change produces cancer, when in reality cancer produces treatment change.

In principle it makes sense to explore specific cancers in such studies. However, the many cancer types generate multiple hypotheses and an increased risk of spurious chance findings. For instance, the report of the Swedish-based study4 emphasised findings on breast cancer—a relative risk of 1·99 (95% CI 1·31–3·03)—for patients on insulin glargine alone compared with patients on other insulins, but with no excess in patients using insulin glargine in combination treatment. Because breast cancer was not predefined as the tumour site of primary concern, this finding (not confirmed in the Scottish-based study5) needs cautious interpretation.

Overall, we see no conclusive evidence that insulin glargine carries an increased of malignancy. We now need an informed scientific debate on what future evidence can realistically be obtained to further clarify this important public health issue. In general, while society expects due diligence in the detection of serious drug side-effects, claims of harm not backed by adequate evidence can provoke unnecessary alarms and anxieties, and seriously interfere with good medical practice.

Stuart J Pocock, *Liam Smeeth
Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
Liam.Smeeth@lshtm.ac.uk

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Adjusted hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomised trial6</td>
<td>Human insulin</td>
</tr>
<tr>
<td>German database2</td>
<td>Human insulin</td>
</tr>
<tr>
<td>UK THIN database3</td>
<td>Human insulin</td>
</tr>
<tr>
<td>Swedish database4</td>
<td>Other insulins</td>
</tr>
<tr>
<td>Scottish database5</td>
<td>Other insulins</td>
</tr>
</tbody>
</table>

Table: Risk of malignancy for patients prescribed insulin glargine compared with other insulins in five prospective studies
Treatments for nicotine addiction should be a top priority

Cigarette smoking is a leading cause of death in the USA. The practice has been linked to 440 000 preventable deaths per year, mainly due to lung cancer (123 836), coronary heart disease (86 801), and respiratory disease and chronic obstructive pulmonary disease (90 582).12 These deaths are the outcome of nicotine addiction, which compels individuals to use tobacco despite the known adverse health consequences. Sadly, priorities for investment in clinical trials are directed at treatment of diseases caused by continued tobacco use, rather than addressing the root cause of the diseases: nicotine addiction (figure). Moreover, clinical trials for smoking cessation and treatment of nicotine addiction are not even within the top 25 therapeutic categories in development by the drug industry; anticancer treatments are the first priority.13 174 pharmacotherapy trials were done for smoking cessation (46 supported by industry) compared with 1490 for lung cancer (544 supported by industry).

The small number of trials for smoking cessation does not correspond to absence of demand. Many smokers would try to quit smoking if effective and inexpensive approaches were available. Of 45·3 million US adult smokers, 43·5% had tried to quit in the past 12 months, and 80% of those who attempted to quit on their own, without pharmacological or behavioural therapies, relapsed within the first month, with only 3% still abstinent at 6 months.4

Unless budgets are increased to develop effective treatments for tobacco dependence, and to make these treatments available to an increased number of people, the Healthy People 2010 goal5 to reduce the proportion of US tobacco users from 21% to 12% is unlikely to be met. According to current projections,

www.thelancet.com
Vol 374 August 15, 2009 513