

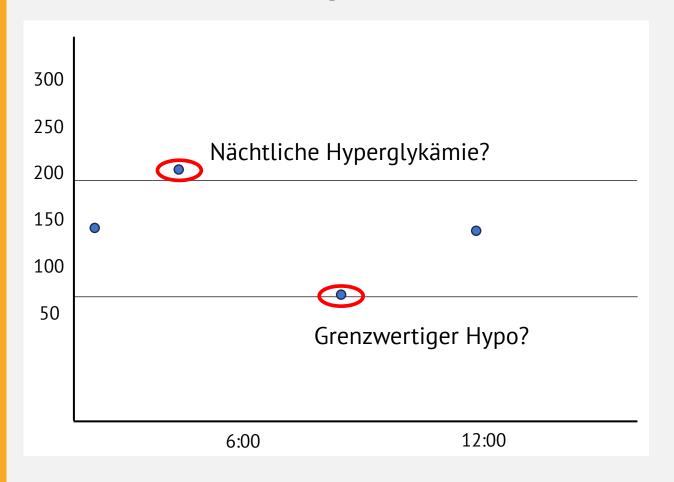
Grundlagen CGM

ÖDG Technologie Kurs

Inhalt

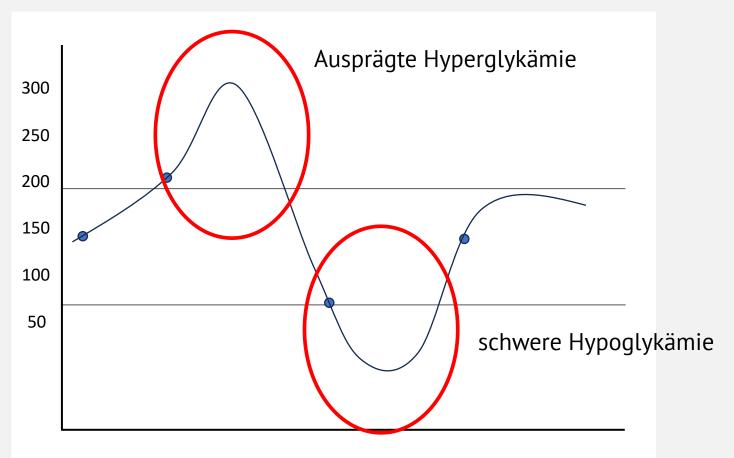
- SMBG vs CGMS
- Technischer Hintergrund
- Basics Sensorkurven
- Übersicht aktuelle Systeme
- CGM-Analyse

Glossar


- AGP ambulante Glucoseprofil
- CGM(S) Continuous Glucose Monitoring (System)
 - rtCGM real-time CGM
 - iscCGM intermittent scanning CGM
- SMBG self-monitoring of blood glucose
- TIR time in range

Single blood glucose vs. Continous glucose monitoring

SMBG – kapilläre BZ-Werte



Beurteilung?

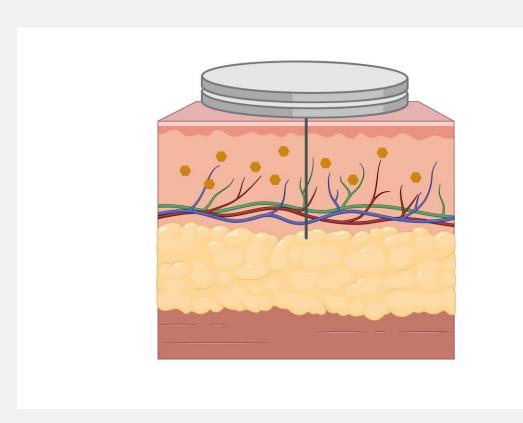
Momentaufnahme ohne Zusammenhänge oder Verläufe

CGM

Beurteilung?

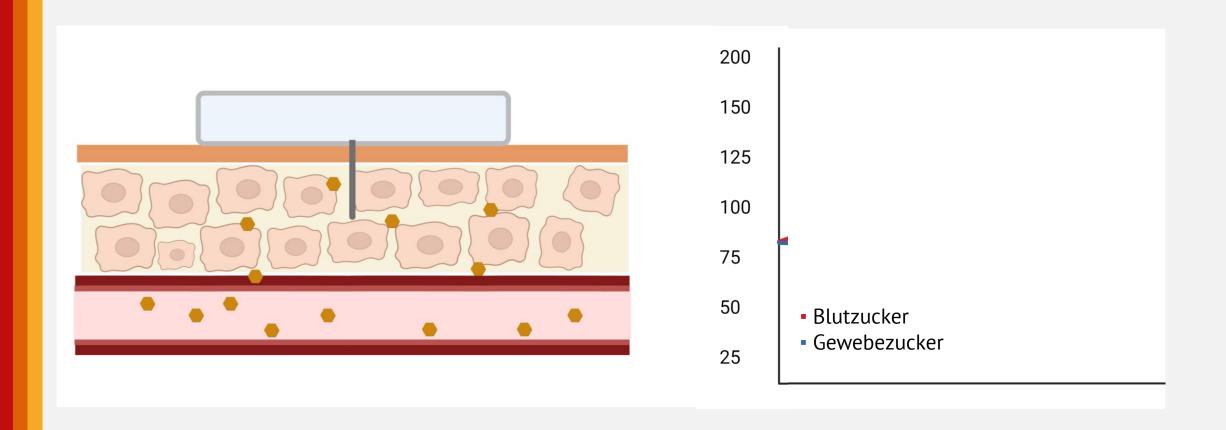
Kontinuierlicher Verlauf, keine versteckten Ausreißer Deutlich mehr Information

SMBG

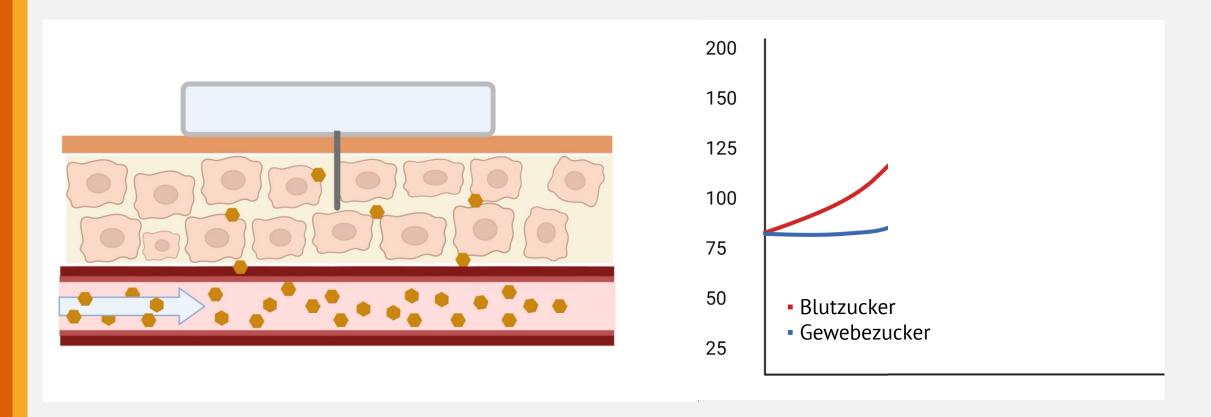

- 4-6 BZ/Tag bei funktioneller Therapie
- Einzelne Momente
- Keine Trendvorhersage

CGMS

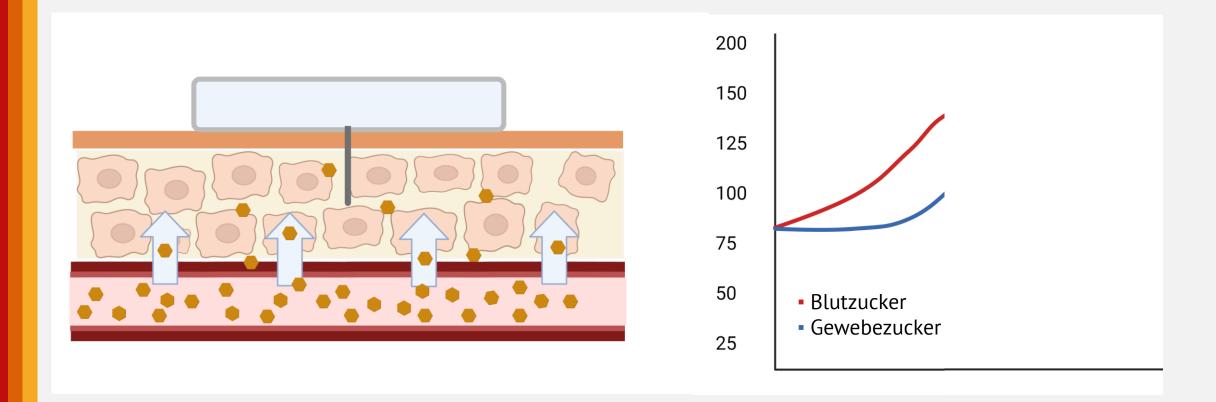
- Minütliche Sensorwerte = 1440 "Messungen" pro Tag
- Realer Verlauf
- Trendvorhersage
- (Vor)Alarme Hypo/Hyperglykämie


Technischer Hintergrund

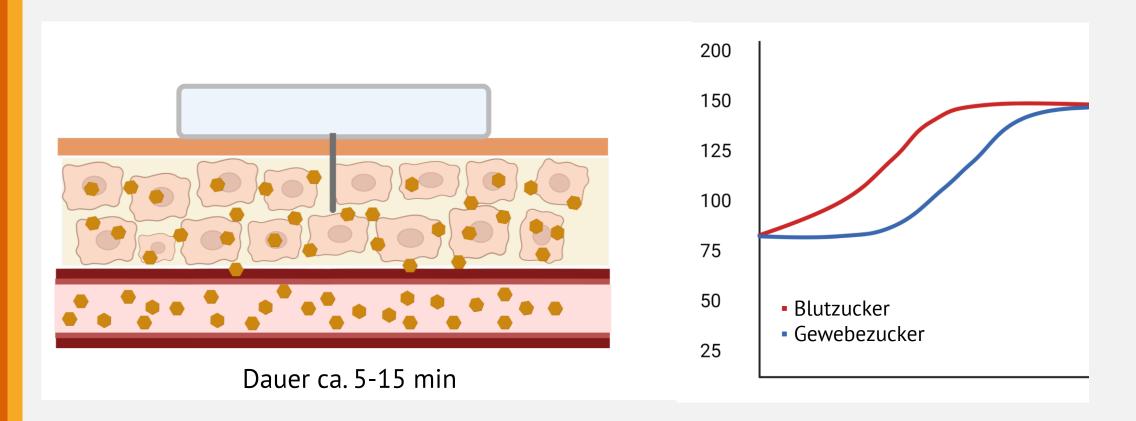
- Externer Teil
 - Transmitter an Messgerät/Handy-App
 - Batterie
- Interner Teil
 - s.c. Messfaden (ca. 5 x 0,4 mm)


Messung passiert mittels elektrochemischer Reaktion, meistens Oxidation von Glucose

Sensor-Lag - Verzögerung Blut vs. Gewebezucker



Blutzucker Anstieg



Diffusion der Glukose ins Gewebe

Äquilibrium zwischen Gewebe und Blut

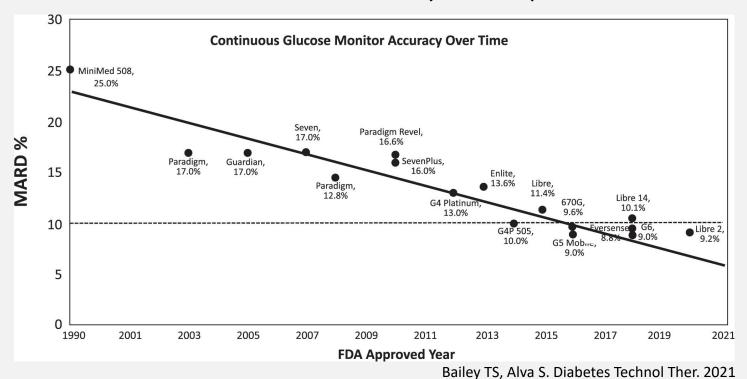
rt-CGM vs. isc-CGM

realtime CGM

- Zeitsynchrones, direktes Ablesen der Glukosewerte vom Display (Pumpe, App, Lesegerät)
- Trendanzeige ($\uparrow \downarrow \leftrightarrow$) und Verlauf
- Hypo- und Hyperglykämiealarmierung

z.B. Guardian 3, Guardian 4, Dexcom G6, Dexcom G7, Freestyle Libre 3

Intermittent-scanning CGM


- "On demand' Ablesen der Glukosewerte bei Scan mit Handy-App bzw. Lesegerät
- Trendanzeige ($\uparrow \downarrow \leftrightarrow$) und Verlauf
- (KEINE) Alarme

z.B. Freestyle Libre 1, Freestyle Libre 2

Accuracy (Messgenauigkeit) von CGM Systemen

Die Genauigkeit hat sich stark verbessert –
 mittlere absolute relative Differenz (MARD) < 9 %

Mean Absolute Relative Difference

- Relative Differenz (RD) = (Wert_x Wert_{Referenz})/ Wert_{Referenz}
 - Wert x Sensor Glukose Werte zu einem bestimmten Zeitpunkt.
 - WertReferenz Glukose Werte einer Referenzmessung (z.B. YSI Glukose) zum gleichen Zeitpunkt
- Absolute RD (ARD) = $|(Wert_x Wert_{Referenz})| / Wert_{Referenz}$
- Mean ARD: Messwertpaare/errechnete ARDs werden summiert und durch deren Anzahl geteilt.

Substanzen, die die Genauigkeit aktueller CGM-Systeme beeinträchtigen können

- Acetaminophen/Paracetamol: falsch hohe Werte Guardian 3 u. 4 Sensoren, Dexcom G5 Sensor
- Ascorbinsäure/Vitamin C: falsch hohe Werte alle Freestyle Libre Sensoren (max. 500 mg pro Tag empfohlen)
- Hydroxyurea/Hydroxycarbamid: falsch hohe Werte alle *Dexcom* Sensoren, *Guardian 3* Sensor

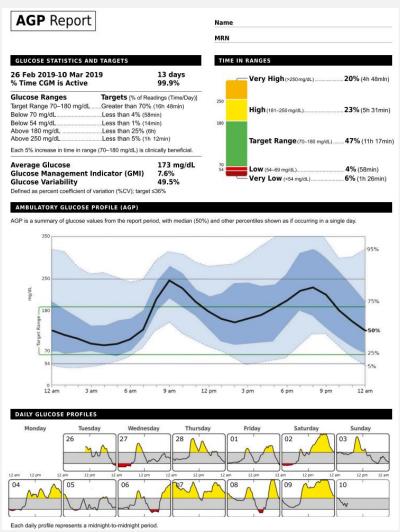
Heinemann L. Interferences With CGM Systems: Practical Relevance? J Diabetes Sci Technol. 2022 Mar;16(2):271-274. doi: 10.1177/19322968211065065.

Müssen CGM-Systeme kalibriert werden?

manuelle Kalibrationen vs. "factory-calibrated" CGMs

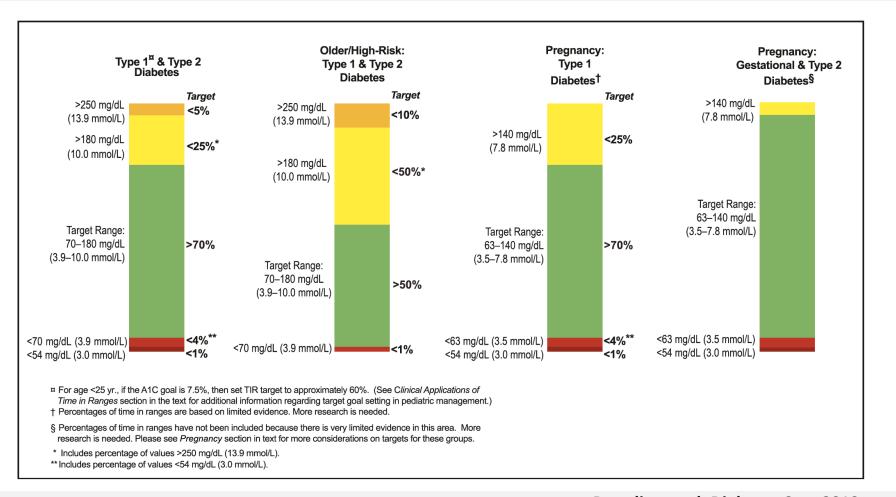
- Ältere Generationen an CGM Sensoren (z.B. Guardian 3) müssen noch manuell kalibriert werden.
- Das System benötigt den Blutzuckerwert als Basis für die Umrechnung des elektrischen Signals in einen Glukosewert.
- Der BZ wird kapillär mit einem konventionellen Messgerät gemessen.
- Der Wert wird dem Empfangsgerät des CGM-Systems mitgeteilt/direkt übertragen.
- Kalibrierungshäufigkeit variiert je nach Gerät (z.B. nach Setzen und dann alle 12h).

- Die neuesten Generationen von rtCGM-Sensoren (z.B Dexcom G6, Dexcom G7, Guardian 4, FSL 3) und alle verfügbaren isCGM (FSL1, FSL2) sind werkseitig kalibriert (factory-calibrated).
- D.h. manuelle Kalibrationen sind nicht mehr erforderlich.
- Kalibrationen können aber zum Teil bei Bedarf (=hohe Abweichungen) durch Userln zusätzlich durchgeführt werden (z.B. Dexcom G6/7, Guardian 4).
- Bei allen FreeStyle Libre Sensoren ist keine individuelle Nachkalibration möglich.



Muss man mit CGM überhaupt noch blutig messen?

- CGMS waren ursprünglich nur ergänzend zur kap. Messung zugelassen ("adjunctive use"), d.h. Sensor-Werte mussten stets durch kap. Messungen überprüft werden (z. B. vor Insulindosierung).
- Durch Verbesserung der Genauigkeit sind aktuelle CGMS nun für den nichtadjuvanten Einsatz zugelassen, d.h. Entscheidungen können allein auf Basis der CGM-Werte getroffen werden ("non-adjuvant use/replacement claim").
- Unter bestimmten Umständen werden jedoch nach wie vor kap. Messungen empfohlen (z.B.):
 - in der Hypoglykämie, oder bei sehr hohen Werten (Genauigkeit hier oft geringer)
 - wenn sich der Blutzuckerspiegel schnell ändert
 - wenn Symptome nicht mit angezeigten Sensorwerten übereinstimmen


Basics Sensorkurven und AGP

Battelino et al; Diabetes Care 2019

- Statistischer Teil
 - Tragezeit und aktive Sensorzeit
 - Time-in Range
 - Durchschnitts-Glukose
 - Variabilität und GMI
- Grafischer Teil
 - Durchschnittstag (über 14 Tage)
 Mean 25.-75. Perzentille 10.-90. Perzentille
 - Grafische Miniaturdarstellung der Einzeltage

Individualisierte Time in Range für verschiedene Gruppen mit Diabetes mellitus

Battelino et al; Diabetes Care 2019

Übersicht aktuelle Systeme

Derzeit in Österreich verfügbare CGMS

Guardian 3/4 Real Time System: hoch/tief Alarme, Trendinformationen,

Trendinformationen, vorausschauende Funktionen, Sensor ist 7 Tage anwendbar

Dexcom G6/7Real Time System:

hoch/tief Alarme, Trendinformationen, Sensor ist 10 Tage anwendbar

Freestyle libre 2/3 Abbott Real time System

Alarme, Trendinformationen, ein Sensor ist 14 Tage anwendbar

Freestyle libre 1 Abbott Flash Glucosemessung

keine Alarme, Trendinformationen, ein Sensor ist 14 Tage anwendbar

Glucoday Menarini Real Time System: hoch/tief Alarme, Trendinformationen

Steckbrief – Guardian 3

Kategorie	rtCGM
Liegedauer	7 Tage
Sensorstelle(n)	Bauch, Gesäß, Oberarm
Messwerte	alle 5 Minuten
Datenspeicher	10h, Datenübertragung bei nächstem Bluetoothkontakt
Kalibrierung	2 h+6 h nach Legen, danach 2 Kalibrierungen/d (spätestens alle 12 Stunden)
Erste Wertanzeige	5 min nach 1. Kalibrierung
Alarm	Änderungsraten, Grenzwerte (hoch, niedrig), Voralarme
Trendpfeile	Ja
Software	Carelink
Zulassung	Keine altersbegrenzung
Sonstiges	Kompatibel mit 670G SystemTransmitter wiederverwendbar und zu laden

Steckbrief – Guardian 4

Kategorie	rtCGM
Liegedauer	7 Tage
Sensorstelle(n)	Bauch, Gesäß, Oberarm
Messwerte	alle 5 Minuten
Datenspeicher	10h, Datenübertragung bei nächstem Bluetoothkontakt
Kalibrierung	Keine
Erste Wertanzeige	2h nach Setzen
Alarm	Änderungsraten, Grenzwerte (hoch, niedrig), Voralarme
Trendpfeile	Ja
Software	Carelink
Zulassung	Ab 7 Jahre
Sonstiges	Kompatibel mit 780G SystemTransmitter wiederverwendbar und zu laden

Steckbrief – Dexcom G6

rtCGM Kategorie Liegedauer 10 Tage Sensorstelle(n) Bauch, Gesäß, Oberarm Messwerte alle 5 Minuten **Datenspeicher** für 3 h, Übertragung bei nächster Bluetoothverbindung Kalibrierung Keine **Erste Wertanzeige** nach 2 h Aufwärmphase **Alarm** Änderungsraten, Grenzwerte (hoch, niedrig), Voralarme Trendpfeile Ja **Software** Dexcom Clarity, Clarity App, Glooko ab vollendetem 2. Lebensjahr Zulassung **Sonstiges** Transmitter wiederverwendbar für 3 Monate Kombinierbar mit vielen AID Systemen (e.g. CamAPS FX, Omnipod 5, Tandem Control IQ)

https://www.dexcom.com

Steckbrief – Dexcom G7

Kategorie	rtCGM
Liegedauer	10 Tage
Sensorstelle(n)	Bauch, Gesäß, Oberarm
Messwerte	alle 5 Minuten
Datenspeicher	für 24h, Übertragung bei nächster Bluetoothverbindung
Kalibrierung	Keine
Erste Wertanzeige	nach Aufwärmphase (bis zu 30 min)
Alarm	Änderungsraten, Grenzwerte (hoch, niedrig), Voralarme
Trendpfeile	Ja
Software	Dexcom Clarity, Clarity App, Glooko
Zulassung	ab vollendetem 2. Lebensjahr
Sonstiges	All-in-one transmitter and sensor

https://www.dexcom.com

Steckbrief – Freestyle Libre 1

Kategorie	iscCGM
Liegedauer	14 Tage
Sensorstelle(n)	Oberarm
Messwerte	Anzeige nach dem Scannen
Datenspeicher	8h (in 15min Schritten), Übertragung beim nächsten Scannen
Kalibrierung	Keine
Erste Wertanzeige	nach 60min Aufwärmphase
Alarm	keine
Trendpfeile	Ja
Software	LibreView
Zulassung	ab 4 Jahren
Sonstiges	All-in-one transmitter and sensor Auch mit LibreLink App zu scannen

https://www.freestylelibre.de/

Steckbrief – Freestyle Libre 2

Kategorie	iscCGM
Liegedauer	14 Tage
Sensorstelle(n)	Oberarm
Messwerte	Anzeige nach dem Scannen
Datenspeicher	8h (in 15min Schritten), Übertragung beim nächsten Scannen
Kalibrierung	Keine
Erste Wertanzeige	nach 60min Aufwärmphase
Alarm	Optional, Grenzwerte (Aufforderung zum Scannen)
Trendpfeile	Ja
Software	LibreView
Zulassung	ab 4 Jahren
Sonstiges	All-in-one transmitter and sensor Auch mit LibreLink App zu scannen

https://www.freestylelibre.de/

Steckbrief – Freestyle Libre 3

Kategorie rtCGM Liegedauer 14 Tage Sensorstelle(n) Oberarm Messwerte Aktueller Werte jede Minute **Datenspeicher** ja Kalibrierung Keine **Erste Wertanzeige** 60 min nach Sensor-Aktivierung **Alarm** Optional, Grenzwerte individuell einstellbar (hoch/niedrig), bei Signalverlust Trendpfeile Ja **Software** LibreView, FreeStyle Libre 3 App ab 4 Jahren Zulassung Sonstiges All-in-one transmitter and sensor Kompatibel mit CamAPS FX System

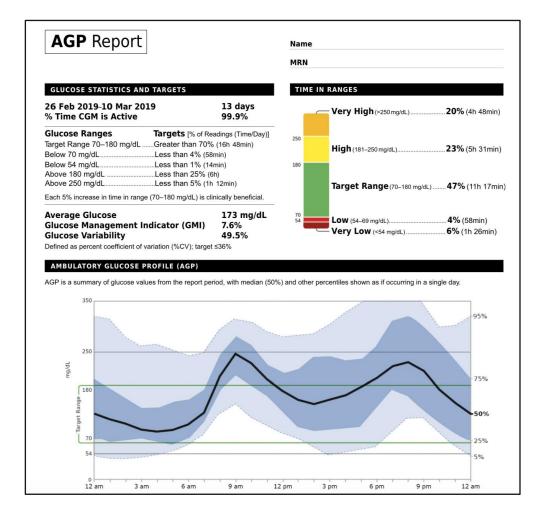
https://www.freestylelibre.de/

Steckbrief – GlucoMen Day

Kategorie rtCGM Liegedauer 14 Tage Sensorstelle(n) Bauch Messwerte Aktueller Werte jede Minute **Datenspeicher** 15 Tage Kalibrierung Ja (an Tag 1 2x/d, danach 1x/d) **Erste Wertanzeige** 55 min nach Setzen **Alarm** Änderungsraten, Grenzwerte (hoch, niedrig), Voralarme Trendpfeile Ja **Software** GlucoLog, Diasend ab 6 Jahren Zulassung Sonstiges Auslesen mit App Transmitter wiederaufladbar und wiederverwendbar (bis zu 5 Jahre)

https://glucomenday.at

Standardisierte CGM-Analyse



Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

Tadei Battelino. 1 Thomas Danne. 2 Richard M. Bergenstal,3 Stephanie A. Amiel,4 Roy Beck,5 Torben Biester.² Emanuele Bosi.⁶ Bruce A. Buckingham, William T. Cefalu, 8 Kelly L. Close,9 Claudio Cobelli,10 Eval Dassau, 11 J. Hans DeVries, 12,13 Kim C. Donaghue, 14 Klemen Dovc, 1 Francis J. Doyle III, 11 Satish Gara. 15 George Grunberger, 16 Simon Heller, 17 Lutz Heinemann. 18 Irl B. Hirsch. 19 Roman Hovorka,20 Weiping Jia,21 Olga Kordonouri, Boris Kovatchev, 22 Aaron Kowalski,23 Lori Laffel,24 Brian Levine,9 Alexander Mayorov,25 Chantal Mathieu, 26 Helen R. Murphy, 27 Revital Nimri, 28 Kirsten Nørgaard, 29 Christopher G. Parkin. 30 Eric Renard. 31 David Rodbard. 32 Banshi Saboo. 33 Desmond Schatz,34 Keaton Stoner,35 Tatsuiko Urakami, 36 Stuart A. Weinzimer, 37 and Moshe Phillip 28,38

Table 1—Standardized CGM metrics

2017 international consensus on CGM metrics (18)

- 1. Number of days CGM worn
- 2. Percentage of time CGM is active
- 3. Mean glucose
- 4. Estimated A1C
- 5. Glycemic variability (%CV or SD)
- 6. Time >250 mg/dL (>13.9 mmol/L)
- 7. Time >180 mg/dL (>10.0 mmol/L)
- 8. Time 70–180 mg/dL (3.9–10.0 mmol/L)
- 9. Time < 70 mg/dL (< 3.9 mmol/L)
- 10. Time <54 mg/dL (<3.0 mmol/L)
- 11. LBGI and HBGI (risk indices)
- 12. Episodes (hypoglycemia and hyperglycemia) 15 min
- 13. Area under the curve
- 14. Time blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV, coefficient of variation; LBGI, low blood glucose index; HBGI, high blood glucose index.

CGM-Analyse

Table 1—Standardized CGM metrics

2017 international consensus on CGM metrics (18)

- 1. Number of days CGM worn
- 2. Percentage of time CGM is active
- 3. Mean glucose
- 4. Estimated A1C
- 5. Glycemic variability (%CV or SD)
- 6. Time >250 mg/dL (>13.9 mmol/L)
- 7. Time >180 mg/dL (>10.0 mmol/L)
- 8. Time 70–180 mg/dL (3.9–10.0 mmol/L)
- 9. Time <70 mg/dL (<3.9 mmol/L)
- 10. Time <54 mg/dL (<3.0 mmol/L)
- 11. LBGI and HBGI (risk indices)
- 12. Episodes (hypoglycemia and hyperglycemia) 15 min
- 13. Area under the curve
- 14. Time blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP) for CGM report

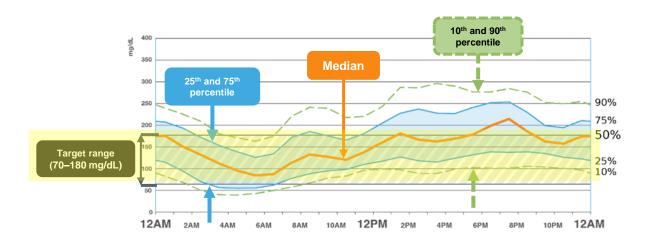
CV, coefficient of variation; LBGI, low blood glucose index; HBGI, high blood glucose index.

70% CGM-Daten innerhalb von 14 aufeinanderfolgenden Tagen¹ 100% CGM-Daten innerhalb von 10 Tagen^{1,2}

¹Danne et al. Diabetes Care 2017;40:1631-² ATTD-consensus on TiR 2019

CGM-Analyse

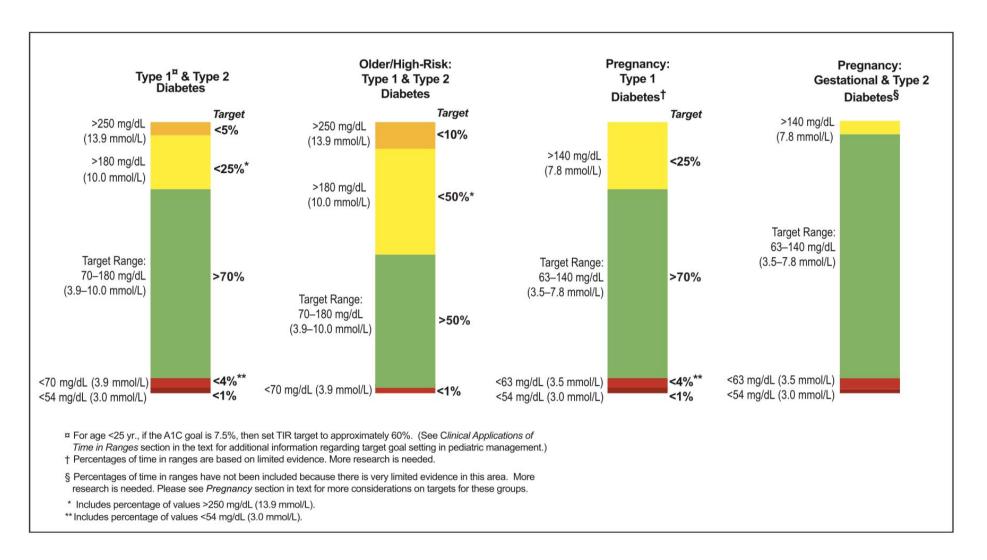
Table 1—Standardized CGM metrics


2017 international consensus on CGM metrics (18)

- 1. Number of days CGM worn
- 2. Percentage of time CGM is active
- 3. Mean glucose
- 4. Estimated A1C
- 5. Glycemic variability (%CV or SD)
- 6. Time >250 mg/dL (>13.9 mmol/L)
- 7. Time >180 mg/dL (>10.0 mmol/L)
- 8. Time 70–180 mg/dL (3.9–10.0 mmol/L)
- 9. Time <70 mg/dL (<3.9 mmol/L)
- 10. Time <54 mg/dL (<3.0 mmol/L)
- 11. LBGI and HBGI (risk indices)
- 12. Episodes (hypoglycemia and hyperglycemia) 15 min
- 13. Area under the curve
- 14. Time blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV, coefficient of variation; LBGI, low blood glucose index; HBGI, high blood glucose index.


Time In Range (TiR)

Aktuell DER Zielparameter bei der kontinuierlichen Glukosemessung!

Time in Range (TiR)

Time in Range und HbA1c

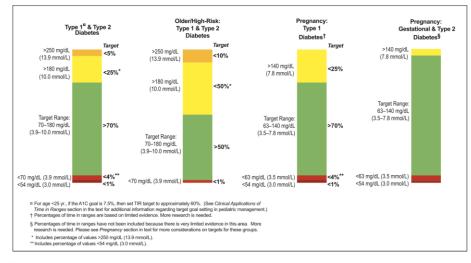
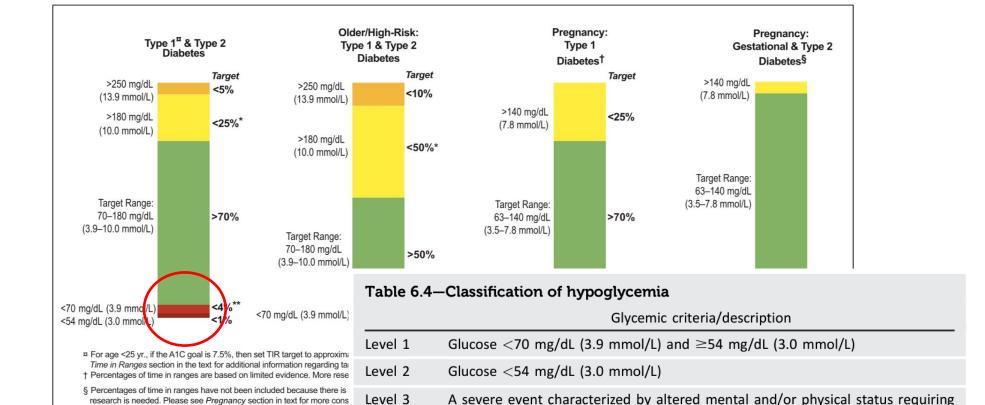


Figure 1—CGM-based targets for different diabetes populations.

Beck et al. (26) (n = 545 participants with type 1 diabetes)		Vigersky and McMahon (27) (n = 1,137 participants with type 1 or type 2 diabetes)		
TIR 70–180 mg/dL 3.9–10.0 mmol/L)	A1C, % (mmol/mol)	95% CI for predicted A1C values, %	TIR 70–180 mg/dL (3.9–10.0 mmol/L)	A1C, % (mmol/mol
20%	9.4 (79)	(8.0, 10.7)	20%	10.6 (92)
30%	8.9 (74)	(7.6, 10.2)	30%	9.8 (84)
40%	8.4 (68)	(7.1, 9.7)	40%	9.0 (75)
50%	7.9 (63)	(6.6, 9.2)	50%	8.3 (67)
60%	7.4 (57)	(6.1, 8.8)	60%	7.5 (59)
70%	7.0 (53)	(5.6, 8.3)	70%	6.7 (50)
80%	6.5 (48)	(5.2, 7.8)	80%	5.9 (42)
90%	6.0 (42)	(4.7, 7.3)	90%	5.1 (32)
every 10% increase in TIR = \sim 0.5% (5.5 mmol/mol) A1C reduction		Every 10% increase in TIR (8.7 mmol/mol) A1C re		

The difference between findings from the two studies likely stems from differences in number of studies analyzed and subjects included (RCTs


with subjects with type 1 diabetes vs. RCTs with subjects with type 1 or type 2 diabetes with CGM and SMBG).

Time below Range (TbR)

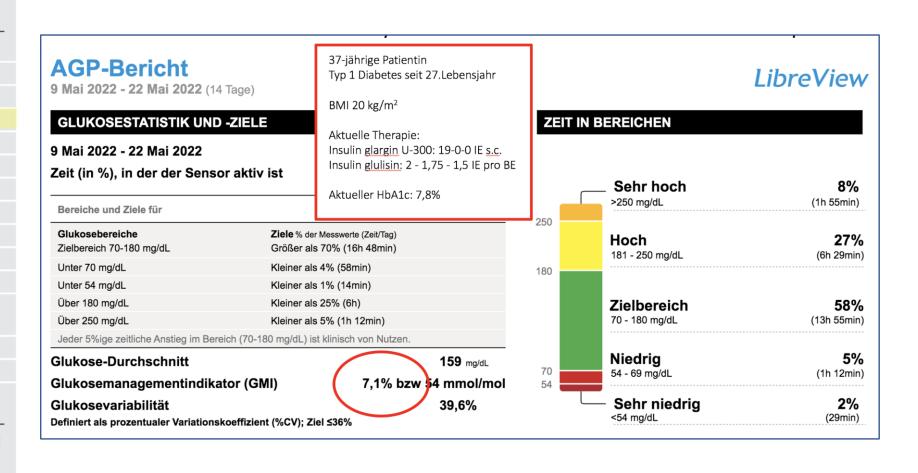
* Includes percentage of values >250 mg/dL (13.9 mmol/L).

** Includes percentage of values <54 mg/dL (3.0 mmol/L).

Reprinted from Agiostratidou et al. (74).

assistance for treatment of hypoglycemia

Der Glucose-Management-Indicator (GMI)


Table 1-Standardized CGM metrics

2017 international consensus on CGM metrics (18)

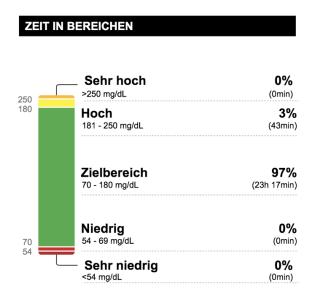
- 1. Number of days CGM worn
- 2. Percentage of time CGM is active
- 3. Mean glucose
- 4. Estimated A1C
- 5. Glycemic variability (%CV or SD)
- 6. Time >250 mg/dL (>13.9 mmol/L)
- 7. Time >180 mg/dL (>10.0 mmol/L)
- 8. Time 70-180 mg/dL (3.9-10.0 mmol/L)
- 9. Time < 70 mg/dL (< 3.9 mmol/L)
- 10. Time <54 mg/dL (<3.0 mmol/L)
- 11. LBGI and HBGI (risk indices)
- 12. Episodes (hypoglycemia and hyperglycemia) 15 min
- 13. Area under the curve
- 14. Time blocks (24-h, day, night)

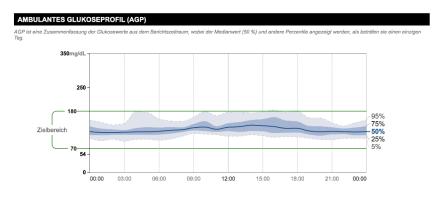
Use of Ambulatory Glucose Profile (AGP) for CGM report

CV, coefficient of variation; LBGI, low blood glucose index; HBGI, high blood glucose index.

Wann kann der GMI hilfreich sein?

Patient mit Typ 2 (?) Diabetes unter Metformin-Monotherapie HbA1c stets 6,5%


Nach COVID-Infektion: Hba1c 8,7% - Indikation für Insulintherapie?


AGP-Bericht

9 Mai 2022 - 22 Mai 2022 (14 Tage)

LibreView

Mai 2022 - 22 Mai 2022 Zeit (in %), in der der Senso	r aktiv ist	14 Tage 66%
Bereiche und Ziele für		Diabetes Typ 1 oder Typ 2
Glukosebereiche Zielbereich 70-180 mg/dL	Ziele % der Messwerte (Z Größer als 70% (16h 4	
Unter 70 mg/dL	Kleiner als 4% (58min)
Unter 54 mg/dL	Kleiner als 1% (14min)
Über 180 mg/dL	Kleiner als 25% (6h)	
Über 250 mg/dL	Kleiner als 5% (1h 12r	min)
Jeder 5%ige zeitliche Anstieg im Berei	ch (70-180 mg/dL) ist klinisch vo	n Nutzen.
Glukose-Durchschnitt		128 mg/dL
Glukosemanagementindikat	or (GMI) 6	5,4% bzw 46 mmol/mo
Glukosevariabilität		16,8%

Table 1—Standardized CGM metrics

2017 international consensus on CGM metrics (18)

- 1. Number of days CGM worn
- 2. Percentage of time CGM is active
- 3. Mean glucose
- 4. Estimated A1C
- 5. Glycemic variability (%CV or SD)
- 6. Time >250 mg/dL (>13.9 mmol/L)
- 7. Time >180 mg/dL (>10.0 mmol/L)
- 8. Time 70-180 mg/dL (3.9-10.0 mmol/L)
- 9. Time <70 mg/dL (<3.9 mmol/L)
- 10. Time <54 mg/dL (<3.0 mmol/L)
- 11. LBGI and HBGI (risk indices)
- 12. Episodes (hypoglycemia and hyperglycemia) 15 min
- 13. Area under the curve
- 14. Time blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV, coefficient of variation; LBGI, low blood glucose index; HBGI, high blood glucose index.

Die glykämische Variabilität (GV) ist ein Maß für Glukose-Schwankungen und bildet sowohl Hypo- als auch Hyperglykämien ab und ist mit einem erhöhten Risiko

für Hypoglykämien assoziiert. Zudem wird diskutiert ob Glukoseschwankungen wesentlich zur Entwicklung von Ko-Morbiditäten bei Diabetes beitragen.

Maß für die GV:

Standard Deviation (SD): Abweichungen vom Mittelwert

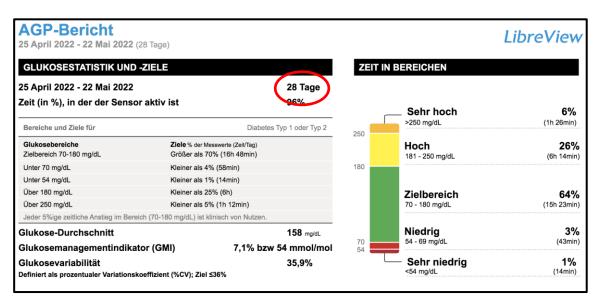
Coefficient of variation (CV) = SD/mean glucose

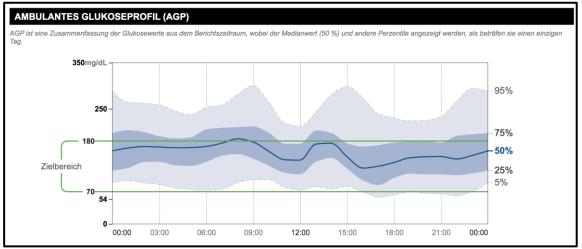
Mean amplitude of glycemic excursions (MAGE)

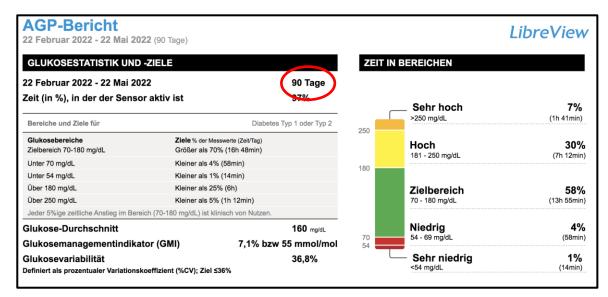
Low Blood Glucose Index (LBGI)

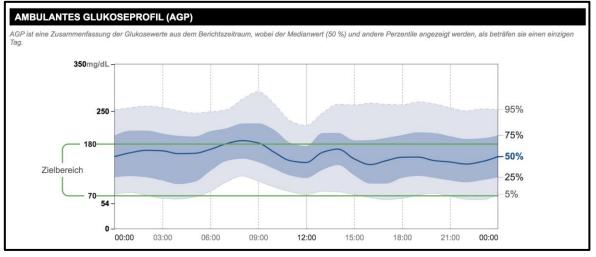
High Blood Glucose Index (HBGI)

CV < 36%: stabile Glukosewerte

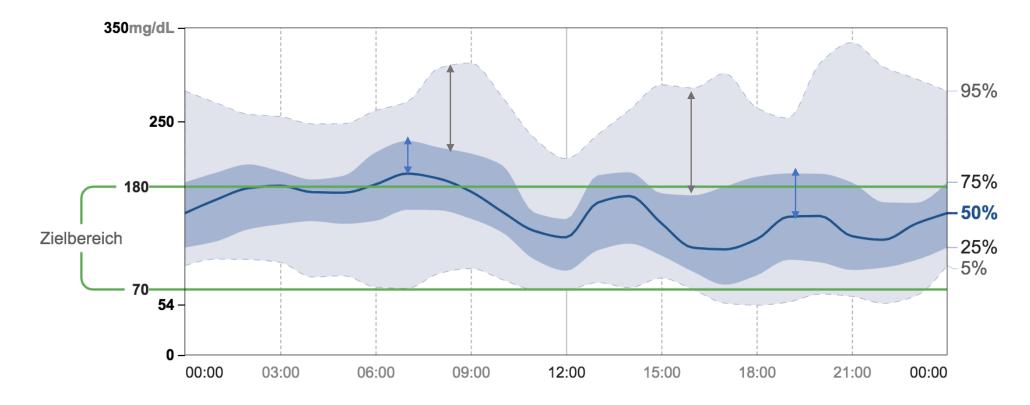

CV ≥ 36%: zu starke Glukoseschwankungen




Weitere Empfehlungen zur CGM-Analyse abseits der internationalen Leitlinien



CGM-Analyse über 14, 30 oder 90 Tage



Interquartile und Interdecile Ranges

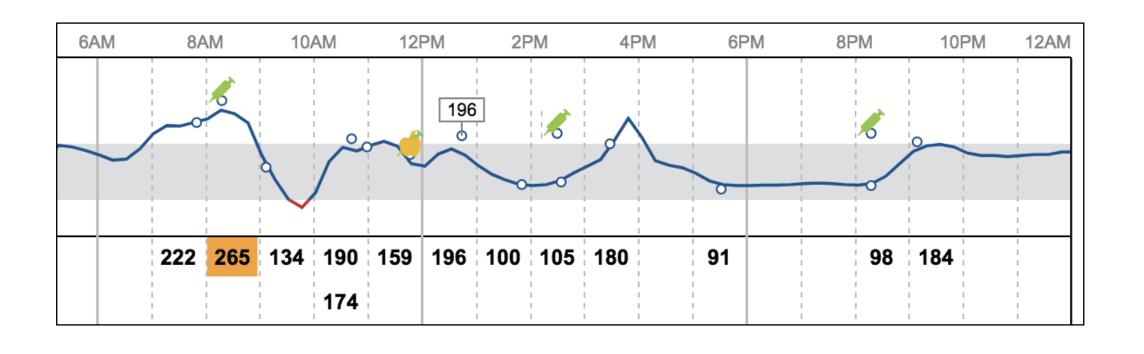
AMBULANTES GLUKOSEPROFIL (AGP)

AGP ist eine Zusammenfassung der Glukosewerte aus dem Berichtszeitraum, wobei der Medianwert (50 %) und andere Perzentile angezeigt werden, als beträfen sie einen einzigen Tag.

Interquartile Range: Maß für die Therapiealgorithmen, zB Dosis Basalinsulin, KH- oder BE-Faktor

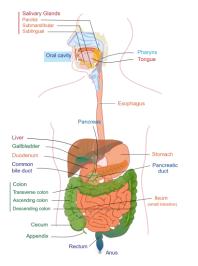
Interdecile Range: Maß für individuelle/Patienten-Faktoren, zB Lebensstil (Sport, Ernährung)

Analysen der Tageskurven

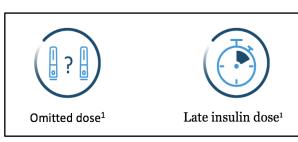


Zu wenig!

Der Mahlzeiten-Bolus kann sein...


Zu viel!

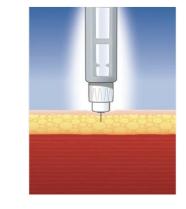
Genau richtig!


©YWS

Ursachen der prandialen glykämischen Variabilität bei Typ 1 Diabetes

Berechnung der

und Insulindosis


/Bolusrechner

KH-Menge

Nahrungsaufnahme

Zusammensetzung der Injektionszeitpunkt Mahlzeiten: convenience food

Vergessene oder verspätete Boli

Insulinresorption

Insulinsensitivität

Gegenregulation

Zusatztherapien